Физики измерили самое маленькое гравитационное поле в истории. Почему это важно?

Ученым давно известно, что в нашем понимании гравитации чего-то не хватает. Она, например, не объясняет, как таинственная темная энергия ускоряет расширение Вселенной, а также не согласуется с квантовой механикой, которая описывает, как объекты ведут себя на уровне атомов и элементарных частиц. Один из способов попытаться примирить обе теории – это наблюдать, как маленькие объекты взаимодействуют с гравитацией. Недавно международная команда физиков впервые в истории успешно измерила гравитационное поле крошечного золотого шара диаметром около 2 мм в лабораторных условиях. Новое исследование призвано помочь ученым понять, как гравитация согласуется с квантовой механикой в мельчайших масштабах. Интересно, что гравитационные силы подобной величины, как правило, возникают только в областях самых отдаленных галактик. Так что результаты нового исследования как минимум восхищают.

Золотой шар, использованный в ходе нового исследования в сравнении с монетой.

Эксперимент Генри Кавендиша

В конце 18 века британский физик и химик Генри Кавендиш хотел измерить среднюю плотность нашей планеты. В эксперименте ученый использовал крутильные весы и коромысло, которое он закрепил на длинной металлической нити. В него физик положил два свинцовых шара примерно по 730 граммов каждый. К каждому из этих шаров – на одной высоте – Кавендиш подвел тяжелый шар, около 150 кг, также сделанный из свинца. Кавендиш приложил максимум усилий в ходе эксперимента и поместил установку в деревянный ящик, чтобы потоки воздуха и перепады температуры не оказывали на нее никакого влияния.

Результат, как вероятно знает уважаемый читатель, позволил с удовлетворительной точностью измерить плотность Земли и стал первым в истории экспериментом по изучению гравитационного взаимодействия между телами в лабораторных условиях. Отметим также, что полученные Кавендишом данные впоследствии позволили ученым вычислить гравитационную постоянную.

Средняя плотность Земли равна 5,51. Эти значения разделяют два века и подтверждают огромный экспериментальный талант британца Генри Кавендиша.

Важно понимать, что ученый в своем эксперименте не ставил задачу определения гравитационной постоянной, так как в те годы еще не было выработано единого представления о ней в научном сообществе.

Как измерить гравитационное поле?

В новом исследовании физики из Венского университета и Австрийской академии наук впервые разработали миниатюрную версию эксперимента Кавендиша. Впервые в истории им удалось успешно измерить гравитационное поле золотого шара диаметром всего 2 мм с помощью высокочувствительного торсионного маятника. В этих масштабах команде необходимо было учесть ряд источников возмущений.

В качестве гравитационной массы физики использовали золотые шары, каждый весом около 90 мг. Две золотые сферы были прикреплены к горизонтальному стеклянному стержню на расстоянии 40 миллиметров. Одна из сфер была тестовой массой, другая – противовесом; третья сфера – исходная масса, перемещалась рядом с тестовой массой для создания гравитационного взаимодействия. Для предотвращения электромагнитного взаимодействия сфер использовался экран Фарадея, а эксперимент проводился в вакуумной камере для предотвращения акустических и сейсмических помех.

Крошечный маятник подвешен на тонком стеклянном волокне ощущает гравитационную силу миллиметрового золотого шара.

Затем с помощью лазера ученые смогли отследить как луч отскочил от зеркала в центре стержня к детектору. Когда стержень вращался, движение лазера на детекторе показывало, насколько сильно действует гравитационная сила, а перемещение массы источника позволило команде точно отобразить гравитационное поле, создаваемое двумя массами. Эксперимент показал, что закон всемирного тяготения Ньютона справедлив даже для крошечных масс размером всего 90 миллиграммов.

Полученные результаты также показали, что в будущем могут быть проведены еще более мелкие измерения гравитационного поля. Интересно и то, что новое открытие может помочь ученым продвинуться в исследовании квантового мира и потенциально получить новое представление о темной материи, темной энергии, теории струн и скалярных полях.

Схема, представленная в исследовании. Изобрадени Nature, 2021

Как отметил соавтор исследования Ганс Хепах в интервью New Scientist, самый большой негравитационный эффект в эксперименте был зафиксирован от сейсмических колебаний, генерируемых пешеходами и трамвайным движением вокруг исследовательской лаборатории в Вене. Поэтому наилучшие результаты измерений физики получали ночью и во время рождественских каникул, когда людей на улицах было меньше.

Источник